The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  1  1  X  1
 0  X  0 X^2+X  0 X^2+X  0  X  0 X^2+X  0  X  0 X^2+X  0  X X^2 X^2+X X^2  X X^2 X^2+X X^2  X X^2 X^2+X X^2  X X^2 X^2+X X^2  X  0 X^2+X  0 X^2+X  0 X^2+X X^2  X  0 X^2+X X^2+X X^2  X X^2+X  0
 0  0 X^2  0  0  0 X^2  0  0 X^2  0 X^2 X^2 X^2 X^2 X^2 X^2  0 X^2  0 X^2  0 X^2  0  0 X^2  0 X^2  0 X^2  0 X^2  0  0  0  0 X^2  0 X^2  0  0 X^2 X^2  0 X^2  0 X^2
 0  0  0 X^2  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2  0 X^2  0  0  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2  0  0  0  0  0  0  0 X^2 X^2  0 X^2 X^2 X^2 X^2  0 X^2 X^2 X^2  0
 0  0  0  0 X^2 X^2 X^2 X^2 X^2  0  0 X^2  0 X^2 X^2  0  0  0 X^2 X^2 X^2 X^2  0  0  0 X^2 X^2  0 X^2  0  0 X^2  0  0 X^2 X^2  0 X^2 X^2  0 X^2  0  0 X^2  0 X^2  0

generates a code of length 47 over Z2[X]/(X^3) who�s minimum homogenous weight is 44.

Homogenous weight enumerator: w(x)=1x^0+17x^44+40x^45+16x^46+112x^47+13x^48+40x^49+13x^50+1x^52+2x^54+1x^90

The gray image is a linear code over GF(2) with n=188, k=8 and d=88.
This code was found by Heurico 1.16 in 0.0483 seconds.